Vestibular loss disrupts daily rhythm in rats.
نویسندگان
چکیده
Hypergravity disrupts the circadian regulation of temperature (Temp) and locomotor activity (Act) mediated through the vestibular otolithic system in mice. In contrast, we do not know whether the anatomical structures associated with vestibular input are crucial for circadian rhythm regulation at 1 G on Earth. In the present study we observed the effects of bilateral vestibular loss (BVL) on the daily rhythms of Temp and Act in semipigmented rats. Our model of vestibular lesion allowed for selective peripheral hair cell degeneration without any other damage. Rats with BVL exhibited a disruption in their daily rhythms (Temp and Act), which were replaced by a main ultradian period (τ <20 h) for 115.8 ± 68.6 h after vestibular lesion compared with rats in the control group. Daily rhythms of Temp and Act in rats with BVL recovered within 1 wk, probably counterbalanced by photic and other nonphotic time cues. No correlation was found between Temp and Act daily rhythms after vestibular lesion in rats with BVL, suggesting a direct influence of vestibular input on the suprachiasmatic nucleus. Our findings support the hypothesis that the vestibular system has an influence on daily rhythm homeostasis in semipigmented rats on Earth, and raise the question of whether daily rhythms might be altered due to vestibular pathology in humans.
منابع مشابه
Exploration of Circadian Rhythms in Patients with Bilateral Vestibular Loss
BACKGROUND New insights have expanded the influence of the vestibular system to the regulation of circadian rhythmicity. Indeed, hypergravity or bilateral vestibular loss (BVL) in rodents causes a disruption in their daily rhythmicity for several days. The vestibular system thus influences hypothalamic regulation of circadian rhythms on Earth, which raises the question of whether daily rhythms ...
متن کاملStreptozotocin-induced diabetes disrupts the body temperature daily rhythm in rats
BACKGROUND In mammals, the temperature rhythm is regulated by the circadian pacemaker located in the suprachiasmatic nuclei, and is considered a "marker rhythm". Melatonin, the pineal gland hormone, is a major regulator of the endogenous rhythms including body temperature. Its production is influenced by many factors, such as type 1 diabetes mellitus. In rats, diabetes leads to hypothermia and ...
متن کاملVestibular Evoked Myogenic Potential Produced by Bone-Conducted Stimuli: A Study on its Basics and Clinical Applications in Patients With Conductive and Sensorineural Hearing Loss and a Group With Vestibular Schawannoma
Introduction: Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. ...
متن کاملMetabolic heat production, heat loss and the circadian rhythm of body temperature in the rat.
Metabolic heat production (calculated from oxygen consumption), dry heat loss (measured in a calorimeter) and body temperature (measured by telemetry) were recorded simultaneously at 6 min intervals over five consecutive days in rats maintained in constant darkness. Robust circadian rhythmicity (confirmed by chi square periodogram analysis) was observed in all three variables. The rhythm of hea...
متن کاملGalvanic vestibular stimulation counteracts hypergravity-induced plastic alteration of vestibulo-cardiovascular reflex in rats.
Recent data from our laboratory demonstrated that, when rats are raised in a hypergravity environment, the sensitivity of the vestibulo-cardiovascular reflex decreases. In a hypergravity environment, static input to the vestibular system is increased; however, because of decreased daily activity, phasic input to the vestibular system may decrease. This decrease may induce use-dependent plastici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 118 3 شماره
صفحات -
تاریخ انتشار 2015